模型不匹配在现实世界应用中占上风。因此,为具有不确定动态模型的系统设计可靠的安全控制算法很重要。主要的挑战是,不确定性导致难以实时寻找可行的安全控制。现有方法通常简化了问题,例如限制不确定性类型,忽略控制限制或放弃可行性保证。在这项工作中,我们通过为有限国家依赖性的不确定性提出一个强大的安全控制框架来克服这些问题。我们首先通过学习控制控制限制,不确定的安全性索引来保证安全控制不确定动态的可行性。然后,我们证明可以将稳健的安全控制作为凸问题(凸度半侵入编程或二阶锥编程)配制,并提出可以实时运行的相应最佳求解器。此外,我们分析了在未建模的不确定性下何时以及如何保留安全性。实验结果表明,我们的方法成功地发现了针对不同的不确定性实时的可靠安全控制,并且比强大的基线算法要保守得多。
translated by 谷歌翻译
强化学习表现出巨大的潜力,可以解决复杂的接触率丰富的机器人操纵任务。但是,在现实世界中使用RL的安全是一个关键问题,因为在培训期间或看不见的情况下,RL政策是不完善的,可能会发生意外的危险碰撞。在本文中,我们提出了一个接触安全的增强增强学习框架,用于接触良好的机器人操纵,该框架在任务空间和关节空间中保持安全性。当RL政策导致机器人组与环境之间的意外冲突时,我们的框架能够立即检测到碰撞并确保接触力量很小。此外,最终效应器被强制执行,同时对外部干扰保持强大的态度。我们训练RL政策以模拟并将其转移到真正的机器人中。关于机器人擦拭任务的现实世界实验表明,即使在策略处于看不见的情况下,我们的方法也能够使接触在任务空间和关节空间中保持较小,同时拒绝对主要任务的干扰。
translated by 谷歌翻译
An unbiased scene graph generation (SGG) algorithm referred to as Skew Class-balanced Re-weighting (SCR) is proposed for considering the unbiased predicate prediction caused by the long-tailed distribution. The prior works focus mainly on alleviating the deteriorating performances of the minority predicate predictions, showing drastic dropping recall scores, i.e., losing the majority predicate performances. It has not yet correctly analyzed the trade-off between majority and minority predicate performances in the limited SGG datasets. In this paper, to alleviate the issue, the Skew Class-balanced Re-weighting (SCR) loss function is considered for the unbiased SGG models. Leveraged by the skewness of biased predicate predictions, the SCR estimates the target predicate weight coefficient and then re-weights more to the biased predicates for better trading-off between the majority predicates and the minority ones. Extensive experiments conducted on the standard Visual Genome dataset and Open Image V4 \& V6 show the performances and generality of the SCR with the traditional SGG models.
translated by 谷歌翻译
In the field of cross-modal retrieval, single encoder models tend to perform better than dual encoder models, but they suffer from high latency and low throughput. In this paper, we present a dual encoder model called BagFormer that utilizes a cross modal interaction mechanism to improve recall performance without sacrificing latency and throughput. BagFormer achieves this through the use of bag-wise interactions, which allow for the transformation of text to a more appropriate granularity and the incorporation of entity knowledge into the model. Our experiments demonstrate that BagFormer is able to achieve results comparable to state-of-the-art single encoder models in cross-modal retrieval tasks, while also offering efficient training and inference with 20.72 times lower latency and 25.74 times higher throughput.
translated by 谷歌翻译
Deep learning has been widely used for protein engineering. However, it is limited by the lack of sufficient experimental data to train an accurate model for predicting the functional fitness of high-order mutants. Here, we develop SESNet, a supervised deep-learning model to predict the fitness for protein mutants by leveraging both sequence and structure information, and exploiting attention mechanism. Our model integrates local evolutionary context from homologous sequences, the global evolutionary context encoding rich semantic from the universal protein sequence space and the structure information accounting for the microenvironment around each residue in a protein. We show that SESNet outperforms state-of-the-art models for predicting the sequence-function relationship on 26 deep mutational scanning datasets. More importantly, we propose a data augmentation strategy by leveraging the data from unsupervised models to pre-train our model. After that, our model can achieve strikingly high accuracy in prediction of the fitness of protein mutants, especially for the higher order variants (> 4 mutation sites), when finetuned by using only a small number of experimental mutation data (<50). The strategy proposed is of great practical value as the required experimental effort, i.e., producing a few tens of experimental mutation data on a given protein, is generally affordable by an ordinary biochemical group and can be applied on almost any protein.
translated by 谷歌翻译
Pioneers of autonomous vehicles (AVs) promised to revolutionize the driving experience and driving safety. However, milestones in AVs have materialized slower than forecast. Two culprits are (1) the lack of verifiability of proposed state-of-the-art AV components, and (2) stagnation of pursuing next-level evaluations, e.g., vehicle-to-infrastructure (V2I) and multi-agent collaboration. In part, progress has been hampered by: the large volume of software in AVs, the multiple disparate conventions, the difficulty of testing across datasets and simulators, and the inflexibility of state-of-the-art AV components. To address these challenges, we present AVstack, an open-source, reconfigurable software platform for AV design, implementation, test, and analysis. AVstack solves the validation problem by enabling first-of-a-kind trade studies on datasets and physics-based simulators. AVstack solves the stagnation problem as a reconfigurable AV platform built on dozens of open-source AV components in a high-level programming language. We demonstrate the power of AVstack through longitudinal testing across multiple benchmark datasets and V2I-collaboration case studies that explore trade-offs of designing multi-sensor, multi-agent algorithms.
translated by 谷歌翻译
Three-dimensional (3D) ultrasound imaging technique has been applied for scoliosis assessment, but current assessment method only uses coronal projection image and cannot illustrate the 3D deformity and vertebra rotation. The vertebra detection is essential to reveal 3D spine information, but the detection task is challenging due to complex data and limited annotations. We propose VertMatch, a two-step framework to detect vertebral structures in 3D ultrasound volume by utilizing unlabeled data in semi-supervised manner. The first step is to detect the possible positions of structures on transverse slice globally, and then the local patches are cropped based on detected positions. The second step is to distinguish whether the patches contain real vertebral structures and screen the predicted positions from the first step. VertMatch develops three novel components for semi-supervised learning: for position detection in the first step, (1) anatomical prior is used to screen pseudo labels generated from confidence threshold method; (2) multi-slice consistency is used to utilize more unlabeled data by inputting multiple adjacent slices; (3) for patch identification in the second step, the categories are rebalanced in each batch to solve imbalance problem. Experimental results demonstrate that VertMatch can detect vertebra accurately in ultrasound volume and outperforms state-of-the-art methods. VertMatch is also validated in clinical application on forty ultrasound scans, and it can be a promising approach for 3D assessment of scoliosis.
translated by 谷歌翻译
Image captioning is one of the straightforward tasks that can take advantage of large-scale web-crawled data which provides rich knowledge about the visual world for a captioning model. However, since web-crawled data contains image-text pairs that are aligned at different levels, the inherent noises (e.g., misaligned pairs) make it difficult to learn a precise captioning model. While the filtering strategy can effectively remove noisy data, however, it leads to a decrease in learnable knowledge and sometimes brings about a new problem of data deficiency. To take the best of both worlds, we propose a noise-aware learning framework, which learns rich knowledge from the whole web-crawled data while being less affected by the noises. This is achieved by the proposed quality controllable model, which is learned using alignment levels of the image-text pairs as an additional control signal during training. The alignment-conditioned training allows the model to generate high-quality captions of well-aligned by simply setting the control signal to desired alignment level at inference time. Through in-depth analysis, we show that our controllable captioning model is effective in handling noise. In addition, with two tasks of zero-shot captioning and text-to-image retrieval using generated captions (i.e., self-retrieval), we also demonstrate our model can produce high-quality captions in terms of descriptiveness and distinctiveness. Code is available at \url{https://github.com/kakaobrain/noc}.
translated by 谷歌翻译
Automatic image colorization is a particularly challenging problem. Due to the high illness of the problem and multi-modal uncertainty, directly training a deep neural network usually leads to incorrect semantic colors and low color richness. Existing transformer-based methods can deliver better results but highly depend on hand-crafted dataset-level empirical distribution priors. In this work, we propose DDColor, a new end-to-end method with dual decoders, for image colorization. More specifically, we design a multi-scale image decoder and a transformer-based color decoder. The former manages to restore the spatial resolution of the image, while the latter establishes the correlation between semantic representations and color queries via cross-attention. The two decoders incorporate to learn semantic-aware color embedding by leveraging the multi-scale visual features. With the help of these two decoders, our method succeeds in producing semantically consistent and visually plausible colorization results without any additional priors. In addition, a simple but effective colorfulness loss is introduced to further improve the color richness of generated results. Our extensive experiments demonstrate that the proposed DDColor achieves significantly superior performance to existing state-of-the-art works both quantitatively and qualitatively. Codes will be made publicly available.
translated by 谷歌翻译
Obtaining ground truth data in medical imaging has difficulties due to the fact that it requires a lot of annotating time from the experts in the field. Also, when trained with supervised learning, it detects only the cases included in the labels. In real practice, we want to also open to other possibilities than the named cases while examining the medical images. As a solution, the need for anomaly detection that can detect and localize abnormalities by learning the normal characteristics using only normal images is emerging. With medical image data, we can design either 2D or 3D networks of self-supervised learning for anomaly detection task. Although 3D networks, which learns 3D structures of the human body, show good performance in 3D medical image anomaly detection, they cannot be stacked in deeper layers due to memory problems. While 2D networks have advantage in feature detection, they lack 3D context information. In this paper, we develop a method for combining the strength of the 3D network and the strength of the 2D network through joint embedding. We also propose the pretask of self-supervised learning to make it possible for the networks to learn efficiently. Through the experiments, we show that the proposed method achieves better performance in both classification and segmentation tasks compared to the SoTA method.
translated by 谷歌翻译